
UNCLASSIFIED

AD NUMBER

ADB208308

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to DoD only;
Proprietary Info.; Feb 96. Other requests
shall be referred to AFMC/STI, Kirtland
AFB, NM 87117-5776.

AUTHORITY

Phillips Lab [AFMC], Kirtland AFB, NM ltr
dtd 28 Jul 97

THIS PAGE IS UNCLASSIFIED

PL-TR--96-1020 PL-TR--
96-1020

GRAPHICAL USER INTERFACE (GUI) INDEPENDENT
EXPERT SHELL

Dustin Huntington

EXSYS Inc.
1720 Louisiana Blvd., Suite 312
Albuquerque, NM 87110

February 1996

Final Report

..WAR~NING - This 4ocrnento oontains termtca 4t hs
DoDcomonntsnl Prpritay *pot is restricted by the:Arnts Fxport Cotrl A'' T`t

D...r..ut..n a....o....ed.....th .r .re ..e.t....... this 22, U.SC,, Sec 2751 etM orT e Export Administrto
Infrmaion Feruay 196.Act of 1979, as amendied (Title 50, US.C., App. 240f, a
4ocumet shahbe scer~ed OAFMseg.), Violations of these 4rxport laws aj-c subjeWt to svr

crimiinal penalties. Disseminaste I.AW the provisionis of DolDL..'..
......... *Directive 5230.25 and AF1 61-204.

DETUCINNO IE- o..as.eddcmet.fo.wth.rc.u... o 502-M nusra .e.urit Man.al .
Seto 1-9o DD50........ Ino.to Securit Prga.euain..ptrI. Frucasfed iie ounns

desroyby tiy eth4 hatwil prven dsclsur ofconens o reaesr..i..of..e......~t

PHILLIPS.......... LABORATORY
Space and Misle.ehnlgyDrctrt...... AIR.. FOR E.M TE IELCOM ANKIRTLAN... AIR FORC.BAS,.NM8711-577

..........19980401.089

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings, specifications,
or other data, does not license the holder or any other person or corporation; or convey any rights
or permission to manufacture, use, or sell any patented invention that may relate to them.

This report contains proprietary information and shall not be either released outside the
government, or used, duplicated or disclosed in whole or in part for manufacture or
procurement, without the written permission of the contractor. This legend shall be marked on
any reproduction hereof in whole or in part.

If you change your address, wish to be removed from this mailing list, or your organization no
longer employs the addressee, please notify PL/VTX, 3550 Aberdeen Ave SE, Kirtland AFB, NM
87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

This report has been approved for publication.

MARY B OM, Capt, USAF
Project M nager

FOR THE COMMANDER

CHRISTINE M. ANDERSON, GM-15 HENi7L. PUGH, JR., Col, USAF
Chief, Satellite Control and Simulation Director, Space and Missiles Technology
Division Directorate

DRAFT SF 298
1. Report Date (dd-mm-yy) 2. Report Type 3. Dates covered (from... to)
February 1996 Final 04/95 to 12/95

4. Title & subtitle 5a. Contract or Grant #
Graphical User Interface (GUI) Independent Expert Shell F29601-95-C-0092

5b. Program Element # 65502F

6. Author(s) 5c. Project # 3005
Dustin Huntington

5d. Task# CO

5e. Work Unit # KP

7. Performing Organization Name & Address 8. Performing Organization Report #
EXSYS Inc.
1720 Louisiana Blvd., Suite 312
Albuquerque, NM 87110

9. Sponsoring/Monitoring Agency Name & Address 10. Monitor Acronym
Phillips Laboratory
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776 PL-TR-96-1 020

12. Distribution/Availability Statement
Distribution authorized to DoD components only; Proprietary Information; February 1996. Other requests for
this document shall be referred to AFMC/STI.

13. Supplementary Notes

14. Abstract The objective of this effort was to demonstrate the feasibility of creating an expert system
development and delivery environment that would allow expert systems to be developed using easy to learn
shells to produce systems which can be integrated in a Graphical User Interface (GUI) independent manner
within a wide range of user interfaces and on a wide range of platforms. This effort successfully partitioned
an existing commercial expert system program, separating the interface engine from the GUI. The ability of
the expert systems to be queried and provide information about decisions and the decision making process
was retained. This was accomplished by designing data structures and protocols that allow the expert system
to function and to interface with other programs. Direct integration was demonstrated in this proof of
concept, as was the feasibility of converting the runtime program into a form that could be accessed by
multiple programs simultaneously. This report details the proof of concept only.

15. Subject Terms Rule-based systems, Artificial Intelligence, Expert systems

.......... --- V 111-11-111.......19. 20. # of 21. Responsible Person
I Limitation of Pages (Name and Telephone #)

16. Report 17. Abstract 18. This Page Abstract
unclassified unclassified unclassified 94 Capt Mary Boom

Limited (505) 846-0461 x317

i

PL-TR--96-1020

GOVERNMENT PURPOSE LICENSE RIGHTS
(SBIR PROGRAM)

Contract Number: F29601-95-C-0092
Contractor: EXSYS Inc.

Albuquerque, NM 87110

For a period of four (4) years after delivery and acceptance of the last deliverable item under the
above contract, this technical data shall be subject to the restrictions contained in the definition of
"Limited Rights" in DFARS clause at 252.227-7013. After the four-year period, the data shall be
subject to the restrictions contained in the definition of "Government Purpose License Rights" in
DFARS clause at 252.227-7013. The Government assumes no liability for unauthorized use or
disclosure by others. This legend shall be included on any reproduction thereof and shall be
honored only as long as the data continues to meet the definition on Government purpose license
rights.

ii

The software and programs accompanying this
report were developed as a proof-of-principle of the
concept of separating the inference engine from the
user interface. They are NOT designed or intended
to be used as a finished or commercial expert
system runtime program. The software is provided
as is to demonstrate the ability to use different
user interfaces. No other warranties or guarantees
of suitability or usefulness are made.

i,, /iv

TABLE OF CONTENTS

Page

1. OBJECTIVES ... I

2. IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM 2

3. PHASE 1 TECHNICAL OBJECTIVES o 4

3.1 TASK 1 - API PROTOCOL DESIGN ... 4
3.2 TASK 2 - CORE INFERENCE ENGINE REWRITE 5
3.3 TASK 3 - DIRECT INTEGRATION .. 5
3.4 TASK 4 - DLL PROOF OF CONCEPT .. 5

4. RESULTS 6

4.1 TASK 1 - API PROTOCOL DESIGN ... 6
Ask for a Qualifier Value .. 7
Ask for a Variable Value .. 8
Displaying a Rule ... 9
Displaying Results .. 12

4.2 TASK 2 - CORE INFERENCE ENGINE REWRITE 15
4.3 TASK 3 - DIRECT INTEGRATION .. 16
4.4 TASK 4 - DLL PROOF OF CONCEPT 21

5. ADDING CUSTOM COMMANDS .. 22

5.1 EX _LINK .C ... 23
5.2 NAMING CUSTOM COMMANDS .. 24
5.3 BODY OF THE CUSTOM COMMAND 25
5.4 PASSING ARGUMENTS TO C USTOM COMMANDS 26
5.5 SETrING VALUES IN CUSTOM COMMANDS 27

6. EXSYS API FuNCTIoNs 29

6.1 FUNCTIONS ... 30

v/vi

1. Objectives

Expert systems are widely used in the Air Force and have a proven to
be an excellent solution in a wide range of problems (e.g. diagnostic,
fault isolation, preventive maintenance, help desks, repair assistance)
However, to be implemented widely and effectively, expert systems
need to be developed in a cost effective manner and integrated within
existing programs through the user interfaces currently in place.
Current expert system tools lack a generic approach to integration of
developed applications into existing programs. Applications which
have been tightly integrated have typically used a highly customized
approach that both made the development of the expert system logic
costly and resulted in such customized code that it could not be
easily applied to other applications. This project was to demonstrate
the feasibility of creating an expert system development and delivery
environment that would allow expert systems to be developed using
easy to learn shells to produce systems which can be integrated in a
"graphical user interface (GUI)" independent manner within a wide
range of user interfaces and on a wide range of platforms.

GUI Independent Linkable Object Modules 1

2. Identification and Significance of
the Problem

Expert systems have been used to solve a wide range of problems in
the military. In most cases these were custom developed
applications with unique end user interfaces. Development was often
custom programmed in an "AI language", such as LISP or Prolog.
These system have often been highly successful and effective in
solving the problem, but the cost per system has been very high.
Also, there have been many difficulties in integrating the expert
system with existing software and user interfaces. These problems
have been due to limitations in the language or shell used to develop
expert system.

To implement expert systems widely and in a cost effective way
requires:

1. An expert system development environment (shell) which
facilitates development of applications rapidly and at low cost.
Ideally this is achieved by allowing the staff with domain
expertise build the applications themselves.

2. A highly flexible runtime/system delivery environment that
enables the expert system decision making capability to be
integrated into a wide range of existing applications. This can
be used to both enhance the ability of existing programs to
solve problems while retaining the application interface users
are familiar with. Also, new programs can be designed to meet
user needs without being limited by the interface capabilities of
expert system tools. This delivery system should be
independent of the GUI used. It should function in a client/
server mode to provide knowledge (answers) to the client's
input of relevant data.

The proposed tools would meet these requirements. Expert system
knowledge bases would be developed with existing development
tools. The EXSYS development tools have a well proven track record
of allowing rapid development of complex expert system applications.
The knowledge bases created could be run from a GUI independent
inference engine that could be easily embedded within a variety of
applications and accessed by multiple users.

GUI Independent Linkable Object Modules 2

SExpert System Knowledge Bases

GUI,,ndependent
Inference Engine

End User Applicaitons

GUI Independent Linkable Object Modules 3

3. Phase 1 Technical Objectives

The Phase I technical objectives were be to take the existing EXSYS
Expert System Development Tools and enhance them to function in a
GUI independent mode. With thousands of users the EXSYS
development tools are well proven to make expert system
development easy and rapid. By starting with the proven current
EXSYS tools, a tremendous amount of work was saved in the creation
of the development tools. The main effort focused on the delivery
system by producing a GUI independent inference engine that can
run applications developed with the existing EXSYS tools.

The display of data to end users has become increasingly
sophisticated and specialized. A wide range of programs have been
developed that allow highly customized (or standardized) displays of
data. While such programs have excellent ability to display
information, they lack an expert system inference engine. The tight
integration of the inference engine with specialized data display
programs usually requires custom programming to bypass the default
user interface provided by the expert system. This makes the
integration difficult and substantially increases the cost and time to
build applications.

The Phase 1 technical objective was to overcome these limitations
through a re-design of the EXSYS runtime to make it:

1. GUI independent, so that the EXSYS functions do not limit
the end user application in its user interface, while still
retaining the full functionality of the expert system to
interactively explain the reasoning used to the end user--one of
the most powerful parts of an expert system.

2. Design the GUI independent version so that multiple queries
can be effectively handled allowing future development of a
client/server architecture.

3.1 Task 1 - Application Program Interface (API) Protocol
Design

The first task was to design a set of API protocols and data structures
required for the expert system to function and interface with the
other programs. These protocols include ways to access the expert
system in a GUI independent way while retaining the full ability to

GUI Independent Linkable Object Modules 4

interrogate the expert system to request an explanation of the logic
used to reach conclusions. Protocols to handle the full functionality
of the applications developed with the EXSYS expert system
development tools were developed. These protocols were designed in
such a way that both GUI and non-GUI programs are able to access
the EXSYS functions.

3.2 Task 2 - Core Inference Engine Rewrite

The core inference engine of the EXSYS Runtime program was
rewritten to reflect the new protocols. This allowed a GUI
independent inference engine to be developed. This core engine does
not have any direct calls to a native operating system GUI command
or any intermediate GUI interface layer (XVT).

3.3 Task 3 - Direct Integration

The GUI independent version of the API was used as the core for a
custom interface program. A user interface was wrapped around the
core program using a third party "GUI design" program. This
demonstrates the functionality of the core inference engine and its
ability to be integrated with other programs. Wrap around layers
allowing normal Runtime functionality were designed both using the
XVT libraries and a character only layer. This demonstrates the
feasibility to run/test applications with a stand alone runtime that
will function identically to the GUI independent core Inference
Engine.

3.4 Task 4 - DLL Proof of Concept

The GUI independent version of the EXSYS Runtime was designed in
such a way that it could be converted to a DLL, allowing multiple
applications to access the inference engine simultaneously. While a
full development of this approach was not possible in Phase 1, the
feasibility and effectiveness of this concept was tested.

GUI Independent Linkable Object Modules 5

4. Results

4.1 Task 1 - API Protocol Design

The goal of phase I was to convert the current EXSYS program from a
form where the code for the GUI screens was intermingled with the
code for the inference engine, to one where the inference engine
could be separated from the user interface. This required major
changes in the user interface routines. The existing version of EXSYS
used end user interface routines that extensively accessed the EXSYS
data structures for information needed to create the user display
screen. The approach demonstrated in this project was to create
data structures that could be passed to the display routines (either
GUI or non-GUI) where the data structure would contain all of the
information needed to display the screen. In this way, the display
routine does not further direct rapid access to the EXSYS data
structures. The routine displaying the data, or asking the question,
could even be in a separate executable connected through DDE. The
first goal to achieve this was design of data structures to:

1. Ask for an EXSYS Qualifier (multiple choice question) value.

2. Ask for the value of a numeric variable.

3. Display a rule.

4. Display results.

5. Display error or message text.

Each data structure had to be:

1. fully self contained and provide all data/text needed to

create the appropriate screen.

2. Flexible to handle different amounts of data.

3. Of a suitable type to be passed vie DDE (no pointers to
other data).

These data structures are passed to a routine that will ask for data or
present information.

GUI Independent Linkable Object Modules 6

Each data structure will be discussed individually:

Ask for a Qualifier Value

#define ASKQUAL_PROMPTLTH 500
#define ASKQUALVALUELTH 500

typedef struct askqualstruct {
int qualnum; /* number of the qualifier */
char prompt[ASKQUALPROMPTLTH]; /* prompt text */
int numval; /* number of values */
int maxval; /* maximum values */
char value [31] [ASKQUALVALUELTH];

/* value text - first is value[l] */
int numselectable;

/* number of values that can be selected */
int allow_why; /* allow WHY l=allow 0=no */
int startask;

/* l=data asked due to .cfg or .cmd file, else =0 */
char retbuff[200];
long custhelp;
long custscr;
long windata;

qualnum - The number of the qualifier. Used in queries for additional

information.

prompt - The text of the qualifier prompt.

numval - The total number of values to choose among.

maxval - The maximum number of separate values that the end user
can select. This is usually either a single value (1) or all values.

value[31] - The text of the individual values that the end user will
select among. The first is value[I].

numselectable - Currently redundant with "maxval". Included for
future expansion.

allowwhy - Flag to indicate if the user is allowed to ask "WHY" in
response to the question. This is dependent on where the question
was asked from within EXSYS. A value of 1=allow WHY, a value of 0
means WHY is not permitted.

GUI Independent Linkable Object Modules 7

startask - Flag to indicate what EXSYS function lead to the question
being asked. 1=data asked due to .cfg or .cmd file, else=O.

retbuff - The buffer to write the return data into. The format of the
data is the same as a return.dat line. This data is used to set the
values in the program when the routine using the data structure
returns.

custhelp - The offset for the custom help commands in the <kb>.hlp
file.

custscr - The offset for the custom screen commands in the <kb>.scr
file.

windata - A long int that can be used by the developer to associate
any other data with the structure. This may be a pointer cast as a
long int pointing to any other structure, e.g. window handles on the
display window. The use of this element is entirely up to the end
developer.

Ask for a Variable Value

#define ASKVARPROMPTLTH 500

typedef struct askvarstruct {
int varnum; /* number of the variable */
char prompt[ASKVARPROMPTLTH]; /* prompt text */
char var-type; /* type string='s' numeric='n' */
char limits;

/* flag that there are limits 0=no l=yes */
double upperlim; /* upper limit value */
double lowerlim; /* lower limit value */
char retbuff[300];
long custhelp;
long custscr;
long windata;

GUI Independent Linkable Object Modules 8

varnum - The number of the variable. Used in queries for additional

information.

prompt - The text of the variable prompt.

var type - The type of data expected. 'S'=string data, 'N'=numeric
data (the input string will be converted to a float with atofO).

limits - Are there limits specified for the acceptable range on input
values. (Applies only to numeric variables) 1=limits, O=no limits.

upperlim - The upper limit value. If limits are specified, the input
value must be less than or equal to this value.

lowerlim - The lower limit value. If limits are specified, the input
value must be greater than or equal to this value.

retbuff - The buffer to write the return data into. The format of the
data is the same as a return.dat line. This data is used to set the
values in the program when the routine using the data structure
returns.

custhelp - The offset for the custom help commands in the <kb>.hlp
file.

custscr - The offset for the custom screen commands in the <kb>.scr
file.

windata - A long int that can be used by the developer to associate
any other data with the structure. This may be a pointer cast as a
long int pointing to any other structure, e.g. window handles on the
display window. The use of this element is entirely up to the end
developer.

Displaying a Rule

Displaying a rule in an efficient manner with a data structure that
could be passed over DDE presented special problems. Rules can
vary greatly in size from 2 conditions to 384 conditions. Also the
amount of text in a specific condition can vary greatly. To be able to
pass the structure over DDE, the structure could not simply use
pointers to other data items that would allow the pieces of rule text
to be created. All text required had to be self contained in a fixed
size structure. To allocate enough space for each of the possible
conditions in an array of the conditions would have resulted in very
large (384 * 500) char byte structures, which would have still limited
the length of an individual condition to 500 char. Instead a 10000

GUI Independent Linkable Object Modules 9

char buffer was used to hold all of the text. This buffer is passed as
part of the structure, and the individual conditions simply contain
offsets into the structure to read text. Individual text item can be
any length, provided collectively they are less than 10000 bytes. The
individual strings are recovered with a API command:

get rule-text(offset, /* the offset in the file */
struct disprule_struct, /* the rule struct */
char *retbuffer) /* the return text buffer */

The use of get ruletextO is demonstrated in the example of
displaying a rule.

#define MAXRULETEXT 10000

typedef struct disprulestruct {
int rulenum;
char nameI[18];
int used;
int ifnum;
struct {

long text;
int status;
char type;

/* Q=qualifier V=variable/formula C=choice */
int item_num; /* item number */
union

{long value;
struct

{int type;
int formnum;

} ch;
} val;

I ifcond[128];
int thennum;
struct {

long text;
} thencond[128];

int elsenum;
struct {

long text;
} elsecond[1281;

long note;
long ref;
int winnum;
long windata;
int toprule;
char textstr [MAXRULETEXT];

G;

GUI Independent Linkable Object Modules 10

rulenum - The number of the rule.

name - The name of the rule.

used - A flag to indicate if the rule has fired. 1=fired TRUE,
-1= fired FALSE, O=unknown (Not yet fired).

ifnum - The number of IF conditions in the rule.

ifcond.text - The offset of the text of the IF of a specific IF condition.
The text is recovered by calling get-rule.texto.

ifcond.status - The status of the specific IF condition l=TRUE,
-1= FALSE, O=unknown (No data yet).

ifcond.type - The type of item in the condition. Q=qualifier,
V=variable/formula, C=choice.

ifcond.itemnum - The number of the specific item.

ifcond.val - Information for requesting additional data. Not
implemented under Phase 1, and not required for simply displaying
the rule.

thennum - The number of THEN conditions in the rule.

thencond.text - The offset of the text of the THEN of a specific THEN
condition. The text is recovered by calling get-ruletextO.

elsenum - The number of ELSE conditions in the rule.

elsecond.text - The offset of the text of the ELSE of a specific ELSE
condition. The text is recovered by calling get.ruletexto.

note - The offset for the note text associated with the rule. If this is a
value of 0, there is no note text. The text is recovered with
get_ruletext().

ref - The offset for the reference text associated with the rule. If this
is a value of 0, there is no reference text. The text is recovered with
get_ruletext(0.

winnum - The number of the window associated with the rule. This
value can be set and used by the end developer as needed.

windata - A long int that can be used by the developer to associate
any other data with the structure. This may be a pointer cast as a
long int pointing to any other structure, e.g. window handles on the

GUI Independent Linkable Object Modules 11

display window. The use of this element is entirely up to the end
developer.

toprule - The maximum rule number in the system. This is needed
for user interfaces that allow the end user to select to display another
rule from the rule display window. It is necessary to know the
maximum legal value to prevent asking for rule numbers not in the
system.

textstr - The block of text containing all text string used to build the
rule. This element should not be accessed directly. All text in the
block can be recovered by the get-ruletext command.

Displaying Results

The display of results presented the same problems as the display of
a rule - the text required can vary from a few short strings to many
long strings. This needed to be handled efficiently and in a way that
could be passed via DDE. The solution was the same as used for rule
display. The text strings are put into a large block of text that is
passed as part of the structure. The text in the block is accessed via
a command:

get-resulttext(offset, /* the offset in the file */
struct nogui resultstruct, /* the struct */
char *retbuffer) /* the return text buffer */

The use of get resulttexto is demonstrated in the example of

displaying a rule.

The result structure is used for 4 different types of screens in EXSYS:

1. Display of the final or intermediate results.
2. Display of current choice values.
3. Display of current qualifier/variable values.
4. Change and Rerun.

#define MAXITEMNUM 500
#define MAXRESULTTEXT 10000

typedef struct nogui resultstruct {
int disp-type;

/* 0=results l=choice 2=qual/var 3=change */
double disp-thr; /* threshold for display */

GUI Independent Linkable Object Modules 12

int dispall; /* display all values */
int sorted; /* already sorted TRUE / FALSE */
int topch; /* highest item assigned data */
char rptfile[100]; /* report file to use */
int runagain;

/* allow another run=l or not=O (cmd language) */
long windata; /* user window data */
struct itemstruct {

int num; /* number of item */
char type; /* type of item C, Q, V */
char vartype; /* type of item N, S, T */
long text;
char asked; /* flag value was asked */
char calc;

/* flag for value calculated */
int disp;

/* flag for display at end O=no +-l=yes */
char init;

/* flag to initialize variable */
union {

double val; /* numeric value */
long sval_offset; /* string offset */
long qval; /* qualifier value */

}v;
}item[MAXITEM_NUM];

char textstr [MAXRESULTTEXT];
struct choicevalue chval[];I;

disp-type - Type of screen to display. O=results, 1=choice,
2=qual/var, 3=change/rerun.

disp..thr - Lowest confidence value threshold. Choices with final
confidence below this threshold should not be displayed.

dispall - Flag to display all values regardless of final value - even
those which did not receive a value. 1=Display all, O=no.

sorted - Flag to indicate if the data has been sorted according to
value or not. 1=sorted, O=not sorted. (Normally this will be sorted).

topch - Highest item array value that contains data.

rptfile - Name of a report file to run as an option from the results
window.

runagain - Flag to allow a "Run Again" option. 1 =Allow,
O=Not allowed.

GUI Independent Linkable Object Modules 13

windata - A long int that can be used by the developer to associate
any other data with the structure. This may be a pointer cast as a
long int pointing to any other structure, e.g. window handles on the
display window. The use of this element is entirely up to the end
developer.

Note: item.xxx elements other than "item.text" are not
normally directly needed by display routines. They are used in
sorting routines and to display additional information about an
item.

item.num - The number of a data element in the results list.

item.type - The type of a data element in the results list.
'C'=Choice, 'Q'=Qualifier, 'V'=Variable.

item.vartype - For Variables, the type of variable. 'N'=Numeric,
'S'=String, 'T'=Text only (Message).

item.text - The offset for the text of the data element in the results
list. The actual text is recovered with getresult.text() using this
offset.

item.asked - Flag that the data was asked of the end user.
1=Asked, O=not asked.

item.calc - Flag that the data was calculated or derived by the
inference engine. O=Not calculated, 1=partially calculated (Inference
engine not full complete), 2=Fully calculated.

item.disp - Flag to display item with the results. 1=Yes, O=No.

item.init - Flag that the variable was originally initialized.

item.v.val - Value for numeric variables or choices.

item.v.svaloffset - Offset for value of string variables. The actual
text is recovered with getresultjtext(using this offset.

item.v.qval - Value for qualifiers.

textstr - The block of text containing all text string used to build the
display screen. This element should not be accessed directly. All
text in the block can be recovered by the get-display-text command.

chval - An array used in sorting the choices. This array should not be
directly accessed by the display routine.

GUI Independent Linkable Object Modules 14

4.2 Task 2 - Core Inference Engine Rewrite

The core inference engine of EXSYS was rewritten to make it GUI
independent. The test of this was the ability to compile the core
inference engine routine without any of XVT include files and to link
a finished executable without using the XVT libraries. All
communication with the routines to ask questions, display a rule and
display results were done through the data structures described in
4.1.

The GUI independent core inference engine routines provided with
this report are:

exnoguiO .obj
exnoguil .obj

exnogui2 .obj

exnogui3 .obj
exnogui4 .obj

exnogui5 .obj

exnogui6 .obj

exnogui7 .obj

excom. obj
exread. obj
excust .obj
ex_l ink.obj
exlink3.obj

In addition, there are a set of GUI independent routines that handle
the EXSYS interface to other programs. For this proof of concept,
the NULL version of the graphics, spreadsheet, PI and SQL interfaces
was used. These routines resolve the references in the link files, but
are not functional. The external commands for table, frame and
blackboard commands are functional. (Note: the graphics and SQL
routines are intrinsically based on MS Windows and the functional
versions can not be put in a non-Windows program.)

eximnull.obj
exssnull.obj
exqenull.obj
expinull.obj
exsysbb.obj

These core inference engine routines can be linked with either a GUI
or non-GUI user interface.

GUI Independent Linkable Object Modules 15

4.3 Task 3 - Direct Integration

The core inference engine routines were linked with both GUI and
non-GUI wrap-arounds to produce executable runtime versions of
EXSYS capable of reading and executing knowledge bases developed
with the off-the-shelf version of the EXSYS editor.

The wrap around .OBJ files are included with this report.

To build a non-GUI version of the EXSYS Runtime, link the .OBJ
modules listed in 4.2 with the module:

exguifct.obj
exlink2.obj

(A RTLINK file to build the character version is in exchar.lnk)

To build the GUI (XVT) version of the EXSYS Runtime, link the .OBJ
modules listed in 4.2 with the modules:

exsyspO .obj

exsyspl .obj

exsyspla .obj

exsysp3 .obj

exsysp4.obj
exsysp5 .obj

exsysp6 .obj

exsysp7.obj
exsysp8 .obj

exsysp9 .obj

exsyspll .obj
exsyspl2 .obj

exsyspl3 .obj

exsyspl4 .obj

guilink2.obj

(The nmake file to build the XVT version is in the file exsysp.mk)

Example:

In both cases, the inference engine code is the same. Custom user
routines can be added to handle the end user interface. In the case
of the XVT code, these routines are fairly long and complex, so the
character routines are used to demonstrate the API for the end user
interface.

GUI Independent Linkable Object Modules 16

The character version in exchar.c was designed to use the simplest
possible user interface routines. Only printf0 and scanf(functions
were used for I/O. This means that the character version could even
be used on a computer with only paper printer output and character
input. (The target simplest machine was taken to be comparable to
the old "Silent 700" terminals - the quintessential non-GUI machine.)

Asking Questions:

To ask for a qualifier input the routine win asko is used. It is passed
a pointer to a structure ask-qualstruct which has all of the
information needed to ask the question. Input is returned by copying
the input to the retbuff element in the structure.

winask(struct ask qualstruct *askdatap)
{
int i;
char b[100];

startloop:

printf ("\n\n\n -- \n\n");

if (askdatap->maxval != 0)
printf(" SELECT UP TO %d\n", askdatap->maxval);

else
printf ("SELECT: \n");

printf("%s\n", askdatap->prompt);

for (i=l; i<=askdatap->numval; i++)
printf(" %d %s\n", i, askdatap->value[i]);

scanf ("%s", b);

if (strlen(b) > 0)
strcpy(askdatap->retbuff, b);

else
goto startloop;

}

This routine first prints a line and uses the maxval element of the
structure to tell the user how many item may be selected. The
prompt element is the text of the qualifier. Each of the value[I
elements is one of the values. The total number of values is in the
numval element. When data is returned from the scanfO it is copied
to the retbuff element and the function returns. When the win ask 0
routine returns, the text in the retbuff element is automatically used
to set the values for the qualifier.

GUI Independent Linkable Object Modules 17

Clearly this routine is about as simple as possible. Many types of
formatting could be added. In a GUI environment, while the routine
would have to be event driven, it would have the same basic functions
- display the values and accept input.

To ask for a variable value, the routine is even simpler:

winaskvar(struct ask varstruct *askvardatap)
{

char b[lO0];

startloop:

printf ("\n\n\n ------------------------------------ \n\n");
printf(" INPUT A VALUE:\\n");
printf("%s\n", askvardatap->prompt);

scanf ("%s", b) ;
if (strlen(b) > 0)

strcpy(askvar-datap->retbuff, b);
else

goto startloop;

In a full implementation, there would be formatting and probably
type checking to separate string and numeric values.

If the end user enters "WHY" in response to a question, the rule(s)
being tested will be displayed. This is handled automatically by the
code that processes the retbuff element after win-askO and
winaskvar0 return.

The display of a rule is a little more complicated because the text
needed for portions of the rule is stored in a single block, rather than
as easily accessible strings. The add_disp_rule(routine is called and
passed a pointer to the structure disprule-struct. In addition two
flags are passed:

1. A howflag indicating if HOW can be used.

2. A wait flag indicating if the called routine should wait while
the rule is displayed or continue processing. Note that the wait
flag only has significance in event driven (GUI) systems where
the program can display a window and wait for it to be
dismissed, or display a window and continue other processing.

GUI Independent Linkable Object Modules 18

add-disp-rule(struct disprule-struct *rule,
mnt how -flag,
int wait)

int i, k;
char b[1500];

printf("\n\nRule %d\n", rule->ruilenuxn);
Printf("\nIF:\n") ;
for (i1l;i<=rule->ifnuin; i++)

{get~rule_text (rule->ifcondili-l] .text, rule, b);
printf("%d %s\n", i, b);

printf ("\nTHEN: \n");
for (i=1;i<=rule->thennum; i++)

{get~rule_text (rule->thencondlli-l] .text, rule, b);
printf(' %s\n", b);

if (rule->elsenuin > 0)

Printf ("\nELSE: \n");
for (i=1;i<=rule->elsenum; i++)

{get-rule~text (rule->elsecond[i-l] .text, rule, b);
printf(l" %s\n", b);

askagainloop:

printf ("\nOK?:)

i=0;

while ((k=getcho) > 13)
{bI~il = k

Printf ("%c", k);

bili] = OxOC;

i = atoi(b);

if (i > 0)
{nogui_findsource(FALSE, FALSE,

rule->ifcond[i-l] .type,

0, 0, 0);
goto askagainloop;

GUI Independent Linkable Object Modules 19

Each of the IF, THEN and ELSE conditions text strings are created
with the routine get rule text0 which returns the string identified by
the ifcond[], thencond[1 and elsecond[] elements. Once the rule is
displayed, the end user may ask the source of any of the IF
conditions by entering their number. The routine nogui findsourceo
is then called to display the source for the particular piece of
information.

Results are displayed by simply displaying the elements of the passed
structure noguiresultstruct. Individual items of text are recovered
with the get resulttexto routine.

dispresults (struct nogui-resultstruct *res)
{
int i;
char b[300];

printf ("\n\nResults: \n");

for (i=l; i<=res->topch; i++)
{
get-resulttext(res->item[i] .text, res, b);
if (res->item[i].type == 'C')

printf("%d - %s %lf \n", i, b,
res->item[i] .v.val);

else if (res->item[i].type == 'Q')
printf("%d - %s \n", i, b) ;

else if (res->item[i].type == 'V')
printf("%d - %s = %lf \n", i, b,

res->item[i] .v.val);}

These 4 sample routines described in the above show a simple user
interface can be added onto the GUI independent inference engine.
Since the inference engine does not do any event processing itself, it
can be called as a routine from either a GUI or non-GUI program.

GUI Independent Linkable Object Modules 20

Examples on Disk

The disk contains examples of both the GUI and non-GUI versions of
the EXSYS Runtime built with the GUI Independent Linkable
Objects. The CHAR subdirectory contains the program EXSYSP.EXE
- This is the character version. It must be passed the name of the file
to run. For example, EXSYSP ZZZ where ZZZ is the name of the
knowledge base to run. This program must be run from a DOS
window. As text is displayed, it just scrolls up the window.

The GUI subdirectory also contains a different EXSYSP.EXE which is
the GUI version built with the same linkable objects. It behaves the
same as a normal GUI version of the EXSYS Runtime. It may be run
from MS Windows or Windows NT.

The object modules and make files used to build these examples are
in the OBJ directory.

4.4 Task 4 - DLL Proof of Concept

The possibility of converting the .OBJ files into a DLL format was
examined. While it was determined that such an approach was
possible, there were limitations. These were due to the requirements
for separate data segments in a DLL and the calling program. Phase
1 was designed to be a proof of principle demonstration.
Functionality for asking questions, display of rules and display of
results was implemented in a GUI independent form that could be
linked with various wrap-around layers. However, the proof of
principal was not designed to fully separate the functionality at a
level that would allow separate data segments. This would be
possible, but was not implemented as part of Phase 1.

Simple routines were separated out and compiled to be in a DLL form
that could be linked with the other program. Large sections of the
GUI independent interface could be handled in this way. This was a
proposed goal for the Phase 2 of this project.

In the current version, since the .obj files are linked directly, there
would be no functional advantage to converting to a DLL form for
some functions.

GUI Independent Linkable Object Modules 21

5. Adding Custom Commands

The easiest way to customize EXSYS programs is to add custom
commands. These may be commands which:

*interface to special software or hardware.

* add special user interfaces (such as multimedia).

* access EXSYS API commands in a way that allows them to be
called in the command language or rules.

* perform calculations that are not practical to do within EXSYS
such as statistical functions.

* provide a way to access user defined data structures.

Anything that can be programmed in the C language can be added as
a custom function. EXSYS Linkable Object Modules (Linkables) is the
EXSYS inference engine in the form of .obj modules with C source
code for up to 99 user defined commands.

GUI Independent Linkable Object Modules 22

5.1 EXLINK.C

Custom commands are added by modifying the code in the module
exlink.c. This module is provided as C code with Linkables. The
distribution version of exlink.c has stub functions for 99 commands.

The custom commands become EXSYS Internal Commands and can
be called anywhere that other internal commands such as RUN() can
be called:

1. From the THEN / ELSE part of rules.
2. In the command file.
3. Associated with a qualifier or variable.

GUI Independent Linkable Object Modules 23

5.2 Naming Custom Commands

Each custom command must have a name that will be used in the
rules and command files to call to the command. When the
command is called, there are three parts:

1. All custom commands start with CC-

2. The name associated the command

3. The arguments (or parameters) for the command in (. If
there are no arguments, just ().

For example, if there is a custom command named ARGTEST, it
would be called from the rules by CC-ARGTEST(...).

To add a custom command, start by making a copy of the file
exlink.c provided with EXSYS Linkable Objects. All custom
command definitions are made in exlink.c which can then be linked
into both a custom Runtime and a custom Editor.

Open exlink.c with a text editor. Look for the array of custom
command names:

char *custcmd[101] = {
/* name for cmdO */
/* name for cmdl */
/* name for cmd2 */

l..., /* name for cmd3 */
/* name for cmd4 */
/* name for cmd5 */

Each name is associated with a stub function cmd##. Replace the
with command names. Enter names that will be easy to remember.
The names can be any number of letters, but must NOT include
spaces. The commands do not have to be entered sequentially. Do
NOT enter the CC-, EXSYS will add that automatically.

For example, to name a custom command ARGTEST:

char *custcmd[101] = {
"ARGTEST", /* name for cmdO */

/* name for cmdl */
/* name for cmd2 */

This would be called from the rules with CC-ARGTEST(...).

GUI Independent Linkable Object Modules 24

5.3 Body of the Custom Command

Each custom command name has an associated stub function
associated with it. The function is listed in the note to the right of
the name. In the ARGTEST example above, the function is cmd0(.

Look in the exlink.c file after the array of names. There are 100
stub function named cmd0() through cmd99().

cmdO(argc, argv)
int argc;
char **argv;{}

cmdl(argc, argv)
int argc;
char **argv;{}

cmd2 (argc, argv)
int argc;
char **argv;{}

The C code to be executed for the custom command is entered in the
corresponding cmd## function. In the case of ARGTEST, this would
be cmdO(). The next custom command would be associated with
cmdl(), etc.

To continue the example, cmd0() will be modified to echo back the
arguments passed to it.

cmdO(argc, argv)
int argc;
char **argv;

{
int i;

/* This function echoes the arguments that */
/* are passed to the function using the
/* xvtnote() command */

xvtnote("\nCC-ARGTEST called with argc = %d\n",
argc);

for (i=O; i<argc; i++)
xvtnote(" argv[%d] = %s \n",i,argv[i]);

G

GUI Independent Linkable Object Modules 25

The xvtnote() command will display a dialog box with the specified
string in it. The string is defined with most of the same options as a
printf() command.

5.4 Passing Arguments to Custom Commands

The arguments that are passed to the custom commands are similar
to the arguments passed to main() in a standard C program, a count
of the arguments, and an argument vector. If you are not familiar
with argument vectors, please review them in a C language
programming book.

The argument vector is parsed from the string in () when the custom
command is used in the expert system. The string in the command
is broken into a series of argument vectors. Each word separated by
a space is made into a separate argument in the vector, unless it is
surrounded by " ". This is exactly the same as the way a command
entered at the DOS prompt is broken up and passed to main().
However, in addition, any EXSYS variables, or [[11 expressions will be
evaluated before being passed to the custom command.

For example, suppose we use the custom command called ARGVECT
and have an EXSYS variable [XI with a value of 7. In our expert
system we use the custom command:

CC-ARGVECT(AAA "bbb ccc" ddd [x])

This will be passed to the custom command cmdO0:

cmdO(argc, argv)
int argc;
char **argv;

In this case argc will be 4 - the total number of argument vectors:

argv[0] = AAA The first word up to a space
argv[l] = bbb ccc The space is part of the string because

of the
argv[2] = ddd The third argument
argv[31 = 7 The value of Ix] is evaluated before it

is passed

The use of argument vectors for custom commands allows maximum
flexibility in passing data to the custom command. There is no fixed
number of arguments. Also, a single command can be made

GUI Independent Linkable Object Modules 26

polymorphic and used for multiple functions based on the number of
arguments passed to it.

The demo system in the DEMO1 subdirectory contains the ARGTEST
function. To test how argument vectors are passed, you can call this
function with various combinations of parameters.

Functions that do not require any arguments can ignore the argc and
argv values, but MUST include them in the definition of cmd##(.
The cmd##() functions must ALWAYS be defined as:

cmd#(argc, argv)
int argc;
char **argv;

5.5 Setting Values in Custom Commands

The custom command functions do not return any value directly.
However, the code associated with the function can use the EXSYS
API functions to set values for EXSYS variables and qualifiers.
Custom user data structures may also be used. Often it is necessary
to pass an address to a custom function to tell it where to assign the
value such as an EXSYS variable. This can be done using

For example, there is a custom command SETVAL that performs
some operation and assigns the value to an EXSYS variable. This
command could be called from the rules with:

CC-SETVAL(123, "-[X]")

The arguments in cmd#() would be:

argv[0] = 123
argvll = [X]

Note that argv[1] is the string "[X]", not the value of X. There are
EXSYS API functions that will allow a value to be set for the EXSYS
variable [X] using this string. For example:

noquote(argv[i1]);
sprintf(b, "%s %lf", argv[l], value to assign);
set data(b);

Other functions for setting values are discussed in the EXSYS API
section in Chapter 6.

GUI Independent Linkable Object Modules 27

A common error is to call the command with:

CC-SETVAL(123, [X])

In this case, EXSYS will attempt to evaluate a value for [X] before it
builds the argument vector and calls cmd#(). This may cause other
rules to be invoked and could be a source for infinite loops or other
problems. When passing an identifier to an EXSYS variable or
qualifier to a custom command either put it in quotes, or specify it in
some way that will not be evaluated before the argument vector is
built (e.g. CC-SETVAL(123, X))

GUI Independent Linkable Object Modules 28

6. EXSYS API Functions

There are a wide range of functions that can be called from custom
commands or from your application to access EXSYS data structures
or execute EXSYS functions. These are in addition to the API
functions associated with the non-GUI embedding of the inference
engine.

There are general categories of function which have been grouped
together.

1. Functions to get data about various EXSYS data elements.
These are typically used to build reports on the status of the
data in the system or screens to ask questions.

2. Functions to set data. These are functions that allow data to
be written directly into the EXSYS data structures.

3. Functions which provide access to high level EXSYS
functions such as displaying a screen or running a command
file.

4. Functions which allow intercepting events and allow the
user to create custom versions of various EXSYS windows such
as those used to display data or ask questions.

5. Utility routines to strip characters or provide conversions.

GUI Independent Linkable Object Modules 29

6.1 Functions

** NOTE **

Some API functions only make sense in a GUI
environment. Those that can only be used in a GUI
environment are listed in italics.

The EXSYS API functions should be used ONLY after
exsysjfileopen() has been called and the expert
system started. Calling the functions prior to this
point will result in a crash since the memory
needed by the data structures will not have been
allocated.

Functions to Get Data

Text of a qualifier getLqual

Text of a qualifier value getLqval

Text of a qualifier and set values get-qv-set

Text associated with a variable get-var

Text of a choice choicetext

Current value of a Choice getchoicevalue

Value of a numeric variable get Nvar value

Value of a string variable getSvarvalue

Test if a qualifier value is set get__qvalvalue

Test if a qualifier was set qual_set

Test if a variable was set varset

Determine type of a variable var-type

List rules in backward chain rule in use

Determine if a rule was used wasrule-used

GUI Independent Linkable Object Modules 30

Functions to Get Upper Limits

Number of choices maxchoice

Number of values for a qualifier maxnum_val

Number of qualifiers max-qual

Number of rules in backward chain maxrule in use

Number of variables max_var

Functions to Set Data

Set EXSYS Data setdata

Assign a value at the start of a run setuserdata

Functions to Convert Names

Qualifier name to number qual-name2num

Rule name to number rulename2num

Variable name to number varname2num

Functions to Control GUI Environment

Close EXSYS windows closeactive

Display an EXSYS rule display-rule

Display a hypertext screen exsyshypertext

Run the rules exsys-runit

Set the name of the system exsys-set_filename

Display trace message exsys-trace__print

Modify termination routine exsys_xvtterminate

Display a file file-display
file_displaynowait

Call EXSYS Notebook notebook

Run a command file runcmdfile

GUI Independent Linkable Object Modules 31

Run a report file runreport-file

Display a custom screen scmdisplay
scmdisplay-nowait

Functions to Handle Errors

Add an error message add to err msg

Handle error message events exsys-err msgjtimer

Functions to Handle Events in taskeh

Handle ECHAR events do exsys.task-char

Handle ECONTROL events doexsysJask control

Utility Functions

Drop CC- from text string droprun

Convert a file to Stream LF makeslf

Remove quotes noquote

Test a file for Stream LF slftest

Replace [[]1 in string varparse

GUI Independent Linkable Object Modules 32

addtoerr_msg()

Add an error message to the list to be displayed
based on a timer

Syntax:

add to-err msg(s)
char *s; /* the error message */

It is convenient to display most error messages with the xvterror()
command. However, XVT does not allow this command to be called
during EUPDATE events. Certain types of errors are only detected
during the EUPDATE event. To allow appropriate error messages to
be displayed, these messages are added to a list and displayed based
on a timer. The exsys-errjmsgtimer() function displays any
messages in the list. The call to this function is found in the taskeh
section of exlink2.c.

Use:

This function can be called to add a message to the error list. It
should only be used if directly calling the xvterror() command
during an EUPDATE event is unavoidable. (XVT does not allow
calling xvterror() during EUPDATE). In that case, use
add toerr-msg() instead.

Example:

We have an EUPDATE event that can detect an error, we could use
this function to display the error. Using an xvt error() command at
this point would produce an error from XVT.

case E_UPDATE:

if (foundanerror == TRUE)

add to err msg("Error found at X");

GUI Independent Linkable Object Modules 33

choicejtext()

Get the text associated with a choice

Syntax:

char *choicetext (n)
int n; /* number of the choice */

This function returns the text associated with a choice. The function
is passed the number of the choice.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used when creating screens that present data on
the status of the choices.

Note: Do not use the earlier non-GUI form of this
command, getchoice(). Unfortunately getschoice
() was an internal XVT routine, and in earlier
versions of XVT, it will link correctly - however it
will not run.

Example:

Print a list of the status of all choices:

for (i=l; i<=maxchoice(); i++) /* for each choice */
fprintf(f, "%s : %lf\n", choice-text(i),

get-choicevalue(i));

GUI Independent Linkable Object Modules 34

closeactive()
Close all active EXSYS Runtime Windows

Syntax:

closeactive(

This function closes all active EXSYS windows that may be asking a
question or displaying data during a run. The top level window
exsys-win is NOT closed. Normally this command should only be
used in applications where the EXSYS inference engine is embedded
within another application.

Use:

This function is used when another application has the EXSYS
inference engine embedded and needs to call EXSYS multiple times.
Calling the close-active() function will close all active windows. Then
calling the XVT command to hide the exsys-win will make EXSYS
effectively disappear. EXSYS can be restarted with the XVT
command to show the EXSYS window, exsys.win, followed by the
runit() command.

Example:

In the demo of embedding EXSYS, we created a custom command
named cc-closeexsys with the associated function:

cmdO(argc, argv)
int argc;
char **argv;

{
closeactive();

/* close all active EXSYS windows */
processevents ();

/* make sure they are finished closing */
showwindow(exsys-win, FALSE);

/* hide exsyswin */
}

GUI Independent Linkable Object Modules 35

When this command is called, the EXSYS windows will be closed and
hidden.

Adding a command file to the knowledge base allows us to call this
custom command at the end of each run:

rules all
results
cc-close-exsys(

GUI Independent Linkable Object Modules 36

display-rule()

Display a rule in an EXSYS window

Syntax:

void display-rule (n)
int n; /* rule number */

This function displays a rule in the normal EXSYS rule display
window. All rule display options to ask about data, examine notes or
references, etc. are active.

Use:

An application may wish to customize the way questions are asked or
data is presented. The displayrule() function allows customized
interfaces to easily call the high level EXSYS functions to display a
rule. All of the rule display options which allow interrogation on how
data was set, what data is known and the source of data are available.

This function allows a high level rule display option to be added to
custom routines with minimum effort.

Example:

If we have a rule named "COST" and we want to display it:

rnum = rulename2num("COST");
if (rnum != -1) /* if good value */

displayrule(rnum); /* display the rule */

GUI Independent Linkable Object Modules 37

doexsysjtaskchar()

Handle ECHAR events in taskeh

Syntax:

doexsys-taskchar(

This function handles events for character key strokes that EXSYS
accepts in taskeh. For the EXSYS Runtime, these are only the
ENTER (RETURN) keys to dismiss screens. The call to the
do-exsystaskchar() function is found in exlink2.c.

Use:

This function should normally be left in the ECHAR part of taskeh
in ex link2.c. If EXSYS is embedded and an alternate taskeh is
created, it is the developers responsibility to determine which events
are for EXSYS in taskeh and which events are for developer created
controls. All ECHAR events to EXSYS in taskeh should be passed to
do exsystaskchar(). Events in taskeh that are handled by the
developer should NOT be passed to doexsysjtaskchar().

Example:

In ex link2.c the taskeh() callback function handles ECHAR events with:

case ECHAR:
/* EXSYS only uses one button in TASKWIN. */

/* This is the "Run Expert System" button. */
/* EXSYS accepts the RETURN (ENTER) key as
/* equivalent to pressing the button. Since
/* there are no other controls, EXSYS's handling */
/* of ECHAR events in TASKWIN is simplified. */
/* If the program uses other ECHAR events */
/* in TASK-WIN, add code to recognize and handle */
/* the other ECHAR events and pass only the
/* ENTER to EXSYS. If this is difficult, or
/* impossible, delete doexsys-task char() below */
/* and handle all TASKWIN ECHAR events as for */
/* the user functions. The only EXSYS function */
/* that will be lost is the user will not be able */
/* to just hit ENTER and have the system start. */
/* Clicking on the button will still work. */

do_exsys task char(ep->v.chr.ch);
return;

GUI Independent Linkable Object Modules 38

doexsysjtaskcontrol()

Handle ECONTROL events in taskeh

Syntax:

do-exsys-taskcontrol(

This function handles events for the normal controls that EXSYS
draws in taskeh. For the EXSYS Runtime, these are the buttons to
start the expert system and dismiss the starting or ending text. The
call to the doexsys-taskcontrol() function is found in exlink2.c.

Use:

This function should normally be left in the ECONTROL part of taskeh in
exlink2.c. If EXSYS is embedded and an alternate taskeh is created, it is
the developers responsibility to determine which events are for EXSYS controls
in taskeh and which events are for developer created controls. All events to
EXSYS controls in taskeh should be passed to doexsys-taskscontrol().
Events for controls in taskeh that are created by the developer should NOT be
passed to dosexsys_taskcontrol(.

Example:

In exlink2.c the taskeh() callback function handles ECONTROL
events with:

case ECONTROL:
/* EXSYS only uses one button in TASK_WIN. */
/* This is the "Run Expert System" button. Since */
/* there are no other controls, EXSYS's handling */
/* of ECONTROL events in TASKWIN is simplified. */
/* If the program creates and uses other controls */
/* in TASK WIN, add code to recognize which */
/* events come from user controls. If the event */
/* is from a user created control, add code to */
/* handle the event. If the control is an EXSYS */
/* control, call do_exsys-task-control(). */
/* DO NOT call do-exsystaskcontrol() for events */
/* from user controls.

doexsys taskcontrol();
return;

GUI Independent Linkable Object Modules 39

droprun()

Delete custom command text from prompt

Syntax:

droprun(s
char *s; /* prompt string */

When a qualifier or variable has an associated custom command, the
text of the custom command is part of the prompt string. (The
prompt string being the text of a variable or a qualifier.) In some
cases only the actual prompt text is wanted. The droprun()
command will take a string with a CC-...() before the prompt and
delete the custom command. The droprun() command will also work
for all other EXSYS internal commands that might precede the text
of a prompt.

Use:

The droprun() command would be used within a custom command
that displayed the prompt of a qualifier or variable without the
associated CC_..() or other EXSYS internal command.

Example:

We have a custom command named CC-GETDTA and it was
associated with a variable that has the prompt "The number of
points". The actual prompt for the variable will be:

CC-GETDATA(1234) The number of points

If this string is passed to droprun(), we would get:

The number of points

In a custom command we might use:

strcpy(b, get-var(5));
droprun(b);
windrawtext(win, 10, 10, b, -1);

GUI Independent Linkable Object Modules 40

exsys-errmsgjtimer()

Display error messages based on a timer

Syntax:

exsyserr-msgtimer(

This function displays certain types of error messages. EXSYS
displays most error messages with the xvt error() command. XVT
does not allow this command to be called during EUPDATE events.
Unfortunately in dynamic custom screens, certain types of errors are
only detected during the EUPDATE event. To allow appropriate
error messages to be displayed, these messages are added to a list
and displayed based on a timer. The exsys-err msgtimer() function
displays any messages in the list. The call to this function is found in
exlink2.c.

Use:

This function should normally be left in the ETIMER part of taskeh
in exlink2.c. If EXSYS is embedded and an alternate taskeh is
created, add this function to handle ETIMER events. Error
messages are added to the list to be displayed with the
add toerr.msg() function.

Example:

In exlink2.c the taskeh() callback function handles ETIMER
events with:

case ETIMER:
/* Due to restrictions in XVT on displaying */
/* xvt-error() during E_UPDATE events, EXSYS
/* displays some error messages on a timer. This */
/* timer is set in exsys_init_err jmsg() above.
/* The error messages may be set during the run. */
/* To display the errors, call
/* the exsys-err-jmsg-timer() function. */

exsys-err-msgtimer ();
break;

GUI Independent Linkable Object Modules 41

exsys-hypertext()

Call the EXSYS hypertext function

Syntax:

exsys_hypertext (s)
char *s; /* the hypertext key word */

This function allows the EXSYS hypertext function to be called to
display a screen. The associated screen should be in the .scr file and
be defined like any other EXSYS hypertext screen. (See the EXSYS
manual for details on the EXSYS hypertext system.)

The word passed to the function is the hypertext keyword. The
screen associated with this word will be displayed. (Note: the
hypertext screen identifier will be designated -~ word)

Use:

This function is a convenient way to enable the end user to make
custom commands that access the hypertext screen. Remember that
in most operating systems, the window of a hypertext screen can not
be displayed on top of a modal dialog. If your custom screens are
based on modal dialogs, they will not be able to bring up hypertext
screens.

Example:

A custom command that has a notebook button which allows the end
user to make notes in a specific file:

case HYPERTEXTBTN:
exsyshypertext ("widget");
break;

GUI Independent Linkable Object Modules 42

exsys-runit()

Restart an EXSYS application

Syntax:

exsysrunit(

This function restarts an already loaded EXSYS application. It will
reinitialize all data (losing data from any previous run) and start at
the beginning of any associated command file.

Use:

This function should ONLY be used for embedded systems where
EXSYS will be started and stopped multiple times. In all other cases,
use the default running of rules or a command file which will load
and run the rules following the creation of exsyswin.

Normally exsys runit() would only be used after a redisplay of the
exsys-win, or in response to a request to restart the application from
the beginning. Use of exsysjrunit() in other cases will probably
crash your application.

Example:

In the demo of embedding EXSYS, we handle the button to run
EXSYS by creating exsyswin the first time, and calling exsys-runit()
on subsequent calls:

case EXSYSBTN:
if (exsyswin == (WINDOW) NULL)

{
/* First time, so create the window */

setrect(...);

exsys win = createwindow(...);

exsys_init (win);
process-events ();
exsysjfileopen();

I
else /* already created, just hidden */

{show-window(exsys-win, TRUE);
exsysrunit();

I

break;

GUI Independent Linkable Object Modules 43

exsys-setfilename()

Set the name of the expert system to be run

Syntax:

exsys-setfilename (f)
file *f; /* file name */

This function sets the name of the knowledge base to run. The file
name passed only needs to be the name up to the period, not the file
extension. (For example, a knowledge base may have files kb.rul
and kb.txt. Only the "kb" part needs to be used.)

Use:

This function is used ONLY when the knowledge base files are read
from the disk. It is NOT used if the knowledge base has been
converted to C code. The function must be used PRIOR to calling the
createwindow() command for exsys win. If there is only a single
knowledge base that will be used, it may be best to call this in main
() following the exsys-set-cfg() function. If this command is not
used, when the expert system starts, it will wait for the user to select
a file with the File Open menu option.

Example:

In an application that will use the knowledge base EMBDEMO which
will be read from disk:

main(int argc, char *argv[]){
static XVTCONFIG config;

exsys-set-cfg(argv[O]);

exsys setfilename("embdemo");

for (i1l; i<argc; i++)
exsys-set-param(argv[i]);

config.appl-name = "EXSYSP";
config.taskwintitle = "EXSYS Pro Runtime";

GUI Independent Linkable Object Modules 44

exsysjtraceprint()

Display a message in the EXSYS trace file and window

Syntax:

exsystrace-print (s
char *s; /* message string */

This function displays a message in the EXSYS trace window (if that
is open) and in the trace file (if one has been specified). The function
automatically checks for the existence of the trace window and file.
If they have not been created, no action will be taken.

Use:

If your application has custom commands which obtain or
manipulate data, you may wish to put messages in the trace window,
especially when debugging your application. This function makes it
easy to do this. The messages will appear in the trace window and
trace file.

Example:

To add a trace statement in a custom command:

cmd23 (argc, argv)
int argc;
char **argv;{

char b[100];
char retdata[1001;

sprintf(b, "cmd23 obtained %s", retdata);
exsys_trace_print (b);

GUI Independent Linkable Object Modules 45

exsys-xvtterminate()

User modifiable routine called whenever EXSYS terminates

Syntax:

exsys-xvtterminate(

This function is defined in ex_link.c. Normally it is defined to just
call xvtterminate() which will terminate the application. Since this
module is provided as part of the source code in Linkable Objects,
the end user can modify the function of exsys.xvtterminate().

Use:

The exsysxvtterminate() function may be modified to perform
"clean up" functions before terminating the application such as
deallocating memory or closing open files. By placing these
functions in exsys xvt terminate(), it is guaranteed that any exit
from EXSYS will perform the desired clean up. Also, since this
routine can be called from the end user's code, it can also be used to
terminate the application outside of the EXSYS portion.

In some cases, such as the embedded system demo. It may be
desirable to have the end of the expert system NOT terminate the
application. In this case, exsysxvtterminate() can be modified to
not perform any function - just return.

Example:

In an application that opens a file which must be closed before the
application terminates, exsys-xvt terminate() in exlink.c could be
modified to:

exsysxvtterminate(
{fclose(myfile);
xvt terminate();

}

GUI Independent kinkable Object Modules 46

filedisplay()
Display a text file in a window and wait

Syntax:

file-display (f)
file *f; /* file name */

This function displays a TEXT file in a window. The end user can
scroll the text within the window. EXSYS automatically handles all
events for the window. If there are any hypertext words in the
displayed text, they will be highlighted automatically. A double click
on a hypertext word will display the associated hypertext custom
screen.

The program will wait for the user to dismiss the text display window
by clicking on OK before it will return from the filedisplay()
command.

Use:

This commands provides a high level command to easily display a file
of text. This function can be used to display reports produced by the
system, or to display files of other information that the end user may
wish to see.

To have a window display text and the program continue without
waiting for the user to dismiss the window, use the
file displaynowait() command.

Example:

Display a file of help information when a button is clicked. The
callback function associated with the window containing the button
would have a section of code that would be used if the button was
clicked:

case HELPBUTTON:
file_display("helpl.dat");
break;

GUI Independent Linkable Object Modules 47

filedisplay-nowait()

Display a text file in a window and don't wait

Syntax:

file-displaynowait (f)
file *f; /* file name */

This function displays a TEXT file in a window. The end user can
scroll the text within the window. EXSYS automatically handles all
events for the window. If there are any hypertext words in the
displayed text, they will be highlighted automatically. A double click
on a hypertext word will display the associated hypertext custom
screen.

The program will NOT wait for the user to dismiss the text display
window and will immediately return from the file-displaynowait()
command.

Use:

This command provides a high level command to easily display a file
of text. This function can be used to display reports produced by the
system, or to display files of other information that the end user may
wish to see.

To have a window display text and wait before it continues, use the
file-display() command.

Example:

Display two files of help information when a button is clicked. Both
will be displayed at the same time and the user can examine both
together. Since the filedisplay-nowait() command returns
immediately, both text windows will be displayed. (If the filedisplay
() command had been used instead, the first window would be
displayed and only after it was closed would the second window be
displayed.) The callback function associated with the window
containing the button would have a section of code that would be
used if the button was clicked:

case HELPBUTTON:
file displaynowait(1"helpl.dat");
filedisplaynowait(1"help2.dat");
break;

GUI Independent Linkable Object Modules 48

getchoicevalue()

Get the value of a choice

Syntax:

double getchoicevalue (n)
int n; /* number of the choice */

This function returns the value of a choice. The function is passed
the number of the choice.

Use:

This function can be used when creating screens that present data on
the status of the choices.

Example:

Print a list of the status of all choices:

for (i=l; i<=maxchoice(); i++) /* for each choice */
fprintf(f, "%s : %lf\n", choice text(i),

getchoicevalue(i));

GUI Independent Linkable Object Modules 49

getNvarvalue()

Get the value of a numeric variable

Syntax:

double getNvar-value(n)
int n; /* number of the variable */

This function returns the value of a of a numeric variable as a double
precision float. The function is passed the number of the variable.

Use:

This function can be used when creating screens that present data on
the status of the variables. To check if a variable is string, numeric
or text, use the vartype() function. Do not ask for the numeric value
of a string variable.

Example:

Print a list of the status of all variables that have values set:

for (i=l; i<=max-var(); i++) /* for each variable */
{if (var set(i) == TRUE)

{if (var type(i) == 'N') /* if numeric */
fprintf(f, "%s : %lf\n", get var(i),

getNvar value(i));
else if (var-type(i) == 'S') /* if string */

fprintf(f, "%s : %s\n", get var(i),
getSvarjvalue(i));

}}

GUI Independent Linkable Object Modules 50

get-qual()

Get the text associated with a qualifier

Syntax:

char *get-qual(n)
int n; /* number of the qualifier */

This function returns the qualifier text associated with qualifier
number n. ONLY the text of the qualifier is returned, no value text is
returned.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used to get text for use in a screen to ask a
question. If the current state of a qualifier is needed, the getqvset()
function should be used. If the text of a qualifier's value is needed,
the get_qval() function should be used.

If the text of the qualifier starts with a CC-.. or other internal EXSYS
command, and you wish to have this command text stripped off the
qualifier, call the droprun() command.

Example:

In a window that asks the end user to select a value for the qualifier,
there would be an EUPDATE section for the window. This code
prints "Please select a value for" and then prints the text of the
qualifier below it. (This would then have value mouse regions or
buttons below this.)

windrawtext(win,10,30,"Please select a value for",-1);

strcpy(b, getqual(n)); /* Get the text string */

windrawtext(win, 10, 60, b, -1);

GUI Independent Linkable Object Modules 51

get qvset()

Get the text associated with a qualifier and all
values that have been set

Syntax:

char *getqvset (n)
int n; /* number of the qualifier */

This function returns the text associated with a qualifier

concatenated with all of the values that have been set.

The function is passed the number of the qualifier.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used in reports to display the current state of
the data - such as the Known Data window. If only the text of a
qualifier is needed, the getqual() function should be used. If the
text of the qualifier's values is needed, the get-qval() function should
be used.

If the text of the qualifier starts with a CC-.. or other internal EXSYS
commands, and you wish to have this command text stripped off the
qualifier, call the droprun() command.

Example:

Print all of the qualifiers that have had a value set:

for (i=l; i<=maxqual(); i++) /* for each qualifier */
{if (qualset(i) == TRUE) /* if it was set */

fprintf(f, "%s\n", get qvset(i));
}

GUI independent Linkable Object Modules 52

get-qval()

Get the text associated with a qualifier's value

Syntax:

char *get-qval(n, v)
int n; /* number of the qualifier */
int v; /* number of the value */

This function returns the text associated with a qualifier's values.
The function is passed the number of the qualifier and the number of
the specific value. The number of the values starts with 1.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used to get text for use in a screen to ask a
question. If the current state of a qualifier is needed, the get-qv set()
function should be used. If the text of only the qualifier is needed,
the getqual() function should be used.

Example:

In a window that asks the end user to select a value for the qualifier,
there would be an ECREATE section for the window. This code
creates a set of buttons for each of the possible values:

for (i=l; i<=maxnumval(n); i++)
{set-rect(&rct, 10, i0+20*i, 150, 30+20*i);
valbutton[i] = createcontrol(WCPUSHBUTTON,

&rct,
getqval(n, i),

win,
CTLFLAGDEFAULT,
01,
i)I

GUI Independent Linkable Object Modules 53

get-qvalvalue()

Test if a particular value in a qualifier has been set

Syntax:

BOOLEAN getqvalvalue (n, v)
int n; /* number of the qualifier */
int v; /* number of the value */

This function returns tests to see if a particular value in a qualifier
has been set. The function is passed the number of the qualifier and
the number of the value. Value numbers start at 1.

Use:

This function can be used when creating screens that present data on
the status of the qualifiers.

Example:

Print a list of the values set for a qualifier:

for (i=l; i<=maxnumval(n); i++) /* for each choice */
{if (get qvalvalue(n, i) == TRUE)

fprintf(f, "%s\n", get-qval(n, i));
}

GUI Independent Linkable Object Modules 54

getSvarvalue()

Get the value of a string variable

Syntax:

char *getSvar-value(n)
int n; /* number of the variable */

This function returns the value of a of a string variable as a character
string pointer. The function is passed the number of the variable.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used when creating screens that present data on
the status of the variables. To check if a variable is string, numeric
or text, use the vartype() function. Do not ask for the string value of
a numeric variable.

Example:

Print a list of the status of all variables that have values set:

for (i=l; i<=maxIvar(); i++) /* for each choice */
{if (varset(i) == TRUE)

{if (var type(i) == 'N') /* if numeric */
fprintf(f, "%s : %lf\n", get-var(i),

getNvarvalue(i));
else if (var type(i) == 'S') /* if string */

fprintf(f, "%s : %s\n", get-var(i),
getSvarvalue(i));

G

GUI Independent Linkable Object Modules 55

get-var()

Get the text associated with a variable

Syntax:

char *get var(n)
int n; /* number of the variable */

This function returns the prompt text associated with a variable. The
function is passed the number of the variable.

After calling this function, either copy the string to a buffer, or use it
immediately. The pointer returned is not guaranteed to have the
data at a later time.

Use:

This function can be used when creating screens that ask the user for
input on a specific variable.

If the text of the prompt starts with a CC-.. or other internal EXSYS
command, and you wish to have this command text stripped off the
prompt, call the droprun() command.

Example:

In a window that asks the end user to select a value for the variable,
there would be an EUPDATE section for the window. This code
prints "Please input a value for" and then prints the text of the
variable below it. (This would then have an edit region below this.)

windrawtext(win,
10,
30,
"Please input a value for",
-1);

strcpy(b, get var(n)); /* Get the text string */

windraw text(win, 10, 60, b, -1);

GUI Independent Linkable Object Modules 56

makeslf() (VMS Only)

Convert a file to Stream LF type

Syntax:

makeslf (s
char *s; /* name of file */

Many EXSYS operations require random repositioning to read within
a file. In VMS this operation can only be done on Stream LF files.
This function converts a file to type Stream LF. This applies only to
VMS. The type of a file can be obtained with the EXSYS API function
slftest().

Use:

If your application is creating or modifying files in VMS that EXSYS
needs to handle as Stream LF, call this function to convert them.

This function is never needed for operating system other than VMS.

Note: In most cases, this should NOT be necessary since EXSYS will
automatically check all files that it needs to be Stream LF and
convert them.

Example:

To check a file and convert it:

if (slftest("xxx") == 0)
makeslf ("xxx");

GUI Independent Linkable Object Modules 57

maxchoice()

Number of choices in a system

Syntax:

max-choice(

This function returns the number of choices in a system.

Use:

This function is typically used in a custom command that handles all
the choices in a system. It can be used to have the command
automatically adjust to changes in the number of choices.

Example:

In a custom command that displays all choices:

for (i=l; i<=maxchoice(); i++)
fprintf(f, "%s : %lf\n", choice_text(i),

get-choicevalue(i));

GUI Independent Linkable Object Modules 58

maxnumval()
Number of values associated with a qualifier

Syntax:

maxnumr_val (n
int n; /* number of the qualifier */

Qualifiers can have up to 30 values associated with them. This
function returns the number of values associated with a specific
qualifier. If the qualifier number is out of range, an error message
will be displayed.

Use:

This function is typically used in a custom command that handles the
qualifiers generically and needs to be able to adjust to the number of
values in a particular qualifier.

Example:

In a custom command that creates a button for each value of a
qualifier:

for (i=l; i<--maxziumval(n); i++)
{set-rect(&rct, 10, i0+20"i, 150, 30+20*i);
valbutton[i] = createcontrol(WCPUSHBUTTON,

&rct,
get-qval(n, i),
win,
CTLFLAGDEFAULT.,
01,
i)

GUI Independent Linkable Object Modules 59

max-qual()

Number of qualifiers in a system

Syntax:

maxqual

This function returns the number of qualifiers in a system.

Use:

This function is typically used in a custom command that handles all
the qualifiers in a system. It can be used to have the command
automatically adjust to changes in the number of qualifiers.

Example:

In a custom command that displays all qualifiers that have had a
value set:

for (i=l; i<=maxqual(); i++)
{if (qual-set(i) == TRUE)
fprintf(f, "%s\n", get-qv-set(i));

I

GUI Independent Linkable Object Modules 60

maxruleinuse()
Number of rules in the backward chain

Syntax:

maxrule-in use(

Backward chaining can result in one rule invoking another rule to
derive needed data. This produces a list of rules that are currently
being processed. When the user asks "WHY" to an EXSYS question,
this list of rules is displayed. Custom interfaces can also obtain
information on the list of rules currently being processed with the
rule in use() command.

The argument passed to the function is the number of the item in the
list: rule in use(l) will return the number of the current rule being
processed by the system, rulein -use(2) will return the number of the
rule which caused the current rule to be invoked, and rule in use(3)
will return the number of the rule that cause the level 2 rule to be
invoked, etc., until the last rule which is the lowest level rule being
processed is reached. The number of the lowest level rule is
obtained with the maxrule in use() function.

Use:

This function is typically used with rule in use() in a custom
command that allows the end user to ask why a question is being
asked. The maxrule in use() function tells the user the largest valid
value to pass to rule in use().

Example:

A custom command that asks a question and allows the end user to
ask WHY:

maxrule = maxrule_inuse();
for (i=l; i<=maxrule(); i++)

/* for each rule in the list */
displayrule(rule-in use(i));

GUI Independent Linkable Object Modules 61

max_var()
Number of variables in a system

Syntax:

max-var

This function returns the number of variables in a system.

Use:

This function is typically used in a custom command that handles all
the variables in a system. It can be used to have the command
automatically adjust to changes in the number of variables.

Example:

In a custom command that displays all variables that have had a
value set:

for (i=l; i<--max var(); i++)
{if (varset(i) == TRUE)
fprintf(f, "%s %lf\n", get-var(i),

getNvarvalue(i));

GUI Independent Linkable Object Modules 62

noquote()

Remove the ""from a string

Syntax:

noquote(s)
char *s; /* the string */

This function removes any .that may start and end a string. If
there are no " " the string is unchanged. NOTE: The string passed is
directly modified. This function does NOT return a pointer to a
modified string.

Use:

This function is a convenient way to drop quotes. The arguments
passed to a custom command may have quotes if the calling function
used them to either indicate a string with spaces embedded or to
designate the name of a variable that was to be passed as a string
rather than as a value to be evaluated.

Example:

A custom command is passed the name of the variable to assign data to:

CC-MYDATA(" [X]",)

The [X] is put in quotes to pass it as a string. If there were no quotes the value
of [X] would be determined and passed as a parameter.

Within the custom command, we want to build a string to assign data to the
variable specified.

noquote(argv[O]);
sprintf(b, "%s %lf", argv[O], value to assign);
set data(b);

GUI Independent Linkable Object Modules 63

We MUST call noquote() before we use the string because it will have
quotes around it. This way we will build:

[X] 1234

Without the noquote() we would build:

" [X] " 1234

Which would not work in the set-data()

GUI Independent Linkable Object Modules 64

notebook()

Call the EXSYS Notebook function

Syntax:

notebook(f)
char *f; /* the name of the file */

This function allows the EXSYS Notebook function to be called to
make short notes in a file. The notebook file can be written to or
examined. The name passed to the function is the name of the
notebook file to use.

Use:

This function is a convenient way to enable the end user to make
short comments about the execution of the expert system.

Example:

A custom command that has a notebook button which allows the end
user to make notes in a specific file:

case NOTEBOOK_BTN:
notebook ("myfile");
break;

GUI Independent Linkable Object Modules 65

qualname2num()

Convert a qualifier name to the associated number

Syntax:

int qualname2num(s)
char *s; /* qualifier name */

This function converts a qualifier name to the associated qualifier
number. The function is passed the name of the qualifier and returns
the number. If there is no qualifier that matches the name, a value of
-1 is returned.

Use:

Many of the EXSYS API functions use the number of a qualifier as a
parameter. However, within a system, it may be easier to refer to
qualifiers by a name that represents the meaning of the qualifier.
Using names is recommended since number can easily change if a
qualifier is deleted or reordered.

The purpose of the qualname2num() function is to allow names to
be used and still convert them to the appropriate value for other API
calls.

Example:

If we have a qualifier named "COLOR" and we want to print its
current status:

qnum = qualname2num("COLOR");
if (qnum != -1) /* if good value */

fprintf(f, "%s", get-qv-set(qnum));

GUI Independent Linkable Object Modules 66

qualset(

Determines if a qualifier has a value set

Syntax:

qualset(n)
int n; /* the qualifier number

This function returns TRUE if the qualifier had a value set by either
the inference engine, an external source, or by asking the user for
data. If no value was set, the function returns FALSE.

Use:

This function is typically used in a custom command that handles all
the qualifiers in a system, but which needs to select those that had a
value set.

Example:

In a custom command that displays all qualifiers that have had a
value set:

for (i=l; i<=mwý--qual(); i++)
{if (qualset(i) == TRUE)
fprintf(f, "%s\n", get-qv-set(i));

GUI Independent Linkable Object Modules 67

rulein-use()
Rules currently active in the backward chain

Syntax:

rule in use(n)
int n; /* the number in the list*/

Backward chaining can result in one rule invoking another rule to
derive needed data. This produces a list of rules that are currently
being processed. When the user asks "WHY" to an EXSYS question,
this list of rules is displayed. Custom interfaces can also obtain
information on the list of rules currently being processed with the
rule in use() command.

The argument passed to the function is the number of the item in the
list: rule in use(l) will return the number of the current rule being
processed by the system, rule-in use(2) will return the number of the
rule which caused the current rule to be invoked, and rule in use(3)
will return the number of the rule that cause the level 2 rule to be
invoked, etc., until the last rule which is the lowest level rule being
processed is reached. The number of the lowest level rule is
obtained with the maxrule in use() function.

Use:

This function is typically used in a custom command that allows the
end user to ask why a question is being asked. The rule in use()
function allows the backward chain to be examined.

Example:

A custom command that asks a question and allows the end user to
ask WHY:

maxrule = max rule in use();
for (i=l; i<=maxrule(); i++)

/* for each rule in the list */
displayrule(rule in use(i));

GUI Independent Linkable Object Modules 68

rulename2num()

Convert a rule name to the associated number

Syntax:

int rulename2num(s)
char *s; /* rule name */

This function converts a rule name to the associated rule number.
The function is passed the name of the rule and returns the number.
If there is no rule that matches the name, a value of -1 is returned.

Use:

Some of the EXSYS API functions use the number of a rule as a
parameter. However, within a system, it is easier to refer to rules by
a name that represents the meaning of the rule. Using names is
recommended since number can easily change if a rule is deleted or
reordered.

The purpose of the rulename2num() function is to allow names to
be used and still convert them to the appropriate value for other API
calls.

GUI Independent Linkable Object Modules 69

runcmdfile()

Execute the commands in a command file

Syntax:

runcmdfile(f)
file *f; /* file name */

This function executes the commands in a command file. All of the
commands that can be included in a .CMD file can be included.

Use:

This command provides a very high level command to easily access a
wide range of EXSYS functionality. This function can be used to
make a system execute in different ways based on user choices.
Several alternate command files can be defined to perform particular
operations. The end user may select what operation to perform by
clicking on a particular button. The command file may execute any
of the EXSYS Command Language commands. This provides
tremendous flexibility in having user selections change the operation
of the system.

Example:

Execute a series of commands when a particular button is clicked.
The callback function associated with the window containing the
button would have a section of code that would be used if the button
was clicked:

case EXEC_1_BUTTON:
run cmd_file("setlcmds");
break;

GUI Independent Linkable Object Modules 70

runjreportfile()

Execute the commands in a report file

Syntax:

run-report-file (f)
file *f; /* file name */

This function executes the commands in a report file. All of the
commands that can be included in a .OUT file can be used.

Use:

This commands provides a very high level command to easily
generate a wide range of reports. This function can be used to make
a system produce different reports based on user choices. Several
alternate report files can be defined to generate different types of
output. The end user may select what report to perform by clicking
on a particular button. The report file may execute any of the EXSYS
Report Generator commands. This provides tremendous flexibility in
having user selections change the operation of the system.

Example:

Produce a report when a particular button is clicked. The callback
function associated with the window containing the button would
have a section of code that would be used if the button was clicked:

case REPORTBUTTON:
run.report_file("typel.rpt");
break;

GUI Independent Linkable Object Modules 71

scrndisplay()

Display a custom screen definition file in a window
and wait

Syntax:

scrn display(f)
file *f; /* file name */

This function displays a custom screen definition file in a window.
The end user can use all of the controls within the window. EXSYS
automatically handles all events for the window. If there are any
hypertext words in the displayed text, they will be highlighted
automatically. A double click on a hypertext word will display the
associated hypertext custom screen.

The program will wait for the user to dismiss the custom screen
window by clicking on OK before it will return from the
scrndisplayo command.

The screen file can contain any custom screen commands and may
be designed with the EXSYS Screen Design Program ExDesign.

Custom screens displayed with this command do NOT return data,
even if return data commands are included. To return data,
associate a custom screen in the .SCR file with an EXSYS qualifier or
variable.

Use:

This commands provides a high level command to easily display a
custom screen. This function can be used to display reports
produced by the system, or to display other information that the end
user may wish to see.

To have a window display a custom screen and the program continue
without waiting for the user to dismiss the window, use the
scrndisplay-nowait() command.

GUI Independent Linkable Object Modules 72

Example:

Display a screen of help information when a button is clicked. The
callback function associated with the window containing the button
would have a section of code that would be used if the button was
clicked:

case HELPBUTTON:
scrzn_display(,"helpl.dat");
break;

GUI Independent Linkable Object Modules 73

scrndisplaynowait()

Display a custom screen definition file in a window
and do NOT wait

Syntax:

scrn display-nowait (f)
file *f; /* file name */

This function displays a custom screen definition file in a window.
The end user can use the controls within the window. EXSYS
automatically handles all events for the window. If there are any
hypertext words in the displayed text, they will be highlighted
automatically. A double click on a hypertext word will display the
associated hypertext custom screen.

The program will NOT wait for the user to dismiss the custom screen
display window and will immediately return from the
scmrdisplayvnowait() command. The screen file can contain any
custom screen commands and may be designed with the EXSYS
Screen Design Program ExDesign.

Custom screens displayed with this command do NOT return data,
even if return data commands are included. To return data,
associate a custom screen in the .SCR file with an EXSYS qualifier or
variable.

Use:

This command provides a high level command to easily display a
custom screen. This function can be used to display reports
produced by the system, or to display other information that the end
user may wish to see.

To have a window display a custom screen and wait before it
continues, use the scrndisplay() command.

GUI Independent Linkable Object Modules 74

Example:

Display two custom screens of help information when a button is
clicked. Both will be displayed at the same time and the user can
examine both together. Since the scm-display-nowait() command
returns immediately, both text windows will be displayed. (If the
scm - display() command had been used instead, the first window
would be displayed and only after it was closed would the second
window be displayed.) The callback function associated with the
window containing the button would have a section of code that
would be used if the button was clicked:

case HELP BUTTON:
scrn -disp1ayAowait("he1p1.dat");
scrn -disp1aynawait("he1p2.dat");
break;

GUI Independent Linkable Object Modules 75

setdata()

Assign a value to a qualifier, variable or choice

Syntax:

set-data(s)
char *s; /* assignment string */

This command allows the assigning of data to EXSYS qualifiers,
variables and choices.

String s has the same syntax as a line from a return.dat file:

For qualifiers: Q <qual #> <value(s)>
Q "name" <value(s)>

For variables: V <var #> <value>
[var name] <value>

For choices: C <choice #> <value>
C "text" <value >

<qual #>, <var #> or <choice #> - The number of the qualifier,

variable or choice that the data is being passed back for.

"name" - The name associated with the qualifier.

"text" - A unique text sub-string in the choice.

<value> - The data to assign.

Use:

This function can be used to assign data in EXSYS. This can be used
when a user defined window asks the user for input or when a
custom command accesses some external source for data and needs
to assign it to an EXSYS variable.

GUI Independent Linkable Object Modules 76

The function does not return a value, however if an invalid
assignment string is passed to the command, an error message will
be displayed and no assignment will be made.

EXSYS will automatically assign string values to string variables.

The setdata() command can be used in custom commands or called
in the setuserdata() function. (See the section on setuserdata()).

Example:

For example:

1. setdata ("V3 2. 1"1) means assign a value of 2.1 to variable 3

2. setdata (" [X] 2.11") means assign a value of 2.1 to
variable [XI

3. If qualifier #7 has four values:

Qualifier #7

THE COLOR IS
1. RED
2. BLUE
3. GREEN
4. ORANGE

set.data("Q7 1,2") means for qualifier 7, set values 1 and 2 as
true, or "The color is red or blue". If more than one value is
set, the values must be separated by a space or comma.

If this qualifier has the associated name "COLOR", we could use

setdata("Q 'COLOR' 1,2")

4. We have a function get some_data() that returns a value
from an external source, based on a string we pass to it. We
call this function in a custom command that is passed a string
to use in get _some-data() and the name of the variable to
assign the value to. The syntax of the custom command is:

CC-DATA("search string" "[variable name]")

GUI Independent Linkable Object Modules 77

The associated custom command would be:

double get-some-data(char *);
/* a user defined function to get data */

cmdO(int argc, char **argv)
{

char b[lO01;

noquote(argv[l]);
sprintf(b, "%s %lf", /* build a string */

argv[l], /* the variable to assign to */
getsomedata(argv[O])); /* the data */

set data(b); /* assign it */
G

GUI Independent Linkable Object Modules 78

setuserdata()

Assign values at the start of a run

Syntax:

Called automatically by EXSYS, NOT a user callable routine.

This function can contain setdata() commands that are called
automatically at the start of a run without using custom commands.

Use:

The function setuserdata() is defined in the module exlink.c. The
default version of the function just returns, but can be modified to
assign data or perform other actions needed in the system.

This function can be used to assign data to EXSYS variables at the
start of a run. This can be used similar to a DATALIST command or
can be used to initialize particular variables. The setuserdata()
function may contain other C code and other EXSYS API commands.
By the time EXSYS calls setuserdata(), memory for all EXSYS data
structures will have been allocated.

Example:

If the setuserdata() function in exlink.c was modified to the
following,

set user data(){
set data("Q1 2");
set data(" [X] 5");}

it would set qualifier 1 value 2 as TRUE and would assign a value of 5
to variable [XI.

GUI Independent Linkable Object Modules 79

slftest() (VMS Only)

Test if a file is a Stream LF file

Syntax:

slftest(s
char *s; /* name of file */

Many EXSYS operations require random repositioning to read within
a file. In VMS this operation can only be done on Stream LF files.
This function tests if a file is of type Stream LF. This applies only to
VMS. If a file is not Stream LF, it can be converted with the EXSYS
API function makeslf().

This function returns 1 if the file is a Stream LF type and 0 if it is not.

Use:

If your application is creating or modifying files in VMS that EXSYS
needs to handle as Stream LF, call this function and makeslf() to
convert them.

This function is never needed for operating system other than VMS.

Note: In most cases, this should NOT be necessary since EXSYS will
automatically check all files that it needs to have be Stream LF and
convert them.

Example:

To check a file and convert it:

if (slftest("xxx") == 0)
makeslf ("xxx");

GUI Independent Linkable Object Modules 80

varname2num()

Convert a variable name to the associated number

Syntax:

int varname2num(s)
char *s; /* variable name */

This function converts a variable name to the associated variable
number. The function is passed the name of the variable and returns
the number. If there is no variable that matches the name, a value of
-1 is returned.

The variable name string can either just be the name or can be the
name in [].

Use:

Many of the EXSYS API functions use the number of a variable as a
parameter. However, within a system, it is easier to refer to variables
by a name that represents the meaning of the variable. Using names
is recommended since number can easily change if a variable is
deleted or reordered.

The purpose of the var name2num() function is to allow names to be
used and still convert them to the appropriate value for other API
calls.

Example:

If we have a variable named "SIZE" and we want to print its current
value:

vnum = varname2num('SIZE");
if (vnum != -1) /* if good value */

fprintf(f, "%lf", getNvar_value(vnum));

GUI Independent Linkable Object Modules 81

varset()
Determines if a variable has a value

Syntax:

var-set (n)
int n; /* the variable number */

This function returns TRUE if the variable had a value set by either
the inference engine, an external source, or by asking the user for
data. If no value was set, the function returns FALSE.

Use:

This function is typically used in a custom command that handles all
the variables in a system, but which needs to select those that had a
value set.

Example:

In a custom command that displays all variables that have had a
value set:

for (i=l; i<=max var(); i++)
{if (varset(i) == TRUE)
fprintf(f, "%s %lf\n", get var(i),

getNvarvalue (i));

GUI Independent Linkable Object Modules 82

var-type()

Determines the type of a variable

Syntax:

varttype(n)
int n; /* the variable number */

This function determines the type of a variable. EXSYS variables can
be numeric, string or text only. (See the EXSYS manual for details
on the EXSYS variable types.)

This function will return:

'N' for Numeric variables
'S' for String variables
'T' for Text Only variables

Use:

This function is typically used in a custom command that handles all
the variables in a system, but which needs to handle the various
types differently.

Example:

In a custom command that displays all variables that have had a
value set:

for (i=l; i<=max-var(); i++) /* for each variable */
{if (varset(i) == TRUE)

{vtype = var-type(i);

if (vtype == 'N') /* if numeric */
fprintf(f, "%s : %lf\n", get-var(i),

getINvar_value(i));
else if (vtype == 'S') /* if string */

fprintf(f, "%s %s\n", get var(i),
getSvar-value(i));

GUI Independent Linkable Object Modules 83

varparse()

Replace (()) and <? ?> stings

Syntax:

varparse(s
char *s; /* string */

EXSYS supports replaceable parameters in text string. If a variable
is enclosed in [[11, the value of the variable will be placed in the
string. Likewise, an expression in <? ?> will be evaluated and placed
in the string. See the EXSYS manual for details on using [[]] and <?
?> replacements.

The varparse() function makes these replacements. If the value of a
variable is not fully known, varparse() will invoke the EXSYS
inference engine to determine a value, or may ask the end user for
the value.

After varparse() returns, the string with all replacements will be in
the original buffer passed to varparse(). The varparse() function
should ONLY be passed text in a buffer - never static data.

When a string buffer is passed to varparse(), make sure that the
buffer is large enough to handle the increased size of the string after
replacements have been made.

Use:

This function is typically used to handle embedded data that may be
present in qualifiers, variables or choices that are displayed in a
custom window.

Example:

In a custom command that displays choices which may have
embedded data, we might use:

strcpy(b, choicetext(5));
varparse (b);
win draw text(win, 10, 10, b, -1);

GUI Independent Linkable Object Modules 84

wasruleused()

Test if a rule was used during a run

Syntax:

Boolean wasrule used(n)
int n; /* rule number */

This function tests if a rule was used during a run. The rule may
have been found to be TRUE or, if it had an ELSE part, found to be
FALSE but still used. The function returns TRUE or FALSE.

Use:

This function can be used to test which rules fired during a run.

Example:

To display all rules that fired during a run:

for (i=l; i<= max-rule(); i++)
(if (was ruleused(i) == TRUE)

displayrule(i);

GUI Independent Linkable Object Modules 85

DISTRIBUTION LIST

AUL/LSE 1 cy
Bldg. 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424

DTIC/OCP 2 cys
8725 John J. Kingman Rd Ste 944
FT Belvoir, VA 22060-6218

AFSAA/SAI 1 cy
1580 Air Force Pentagon
Washington, DC 20330-1580

PL/SUL 2 cys
Kirtland AFB, NM 87117-5776

PL/HO 1 cy

Kirtland AFB, NM 87117-5776

Official Record Copy

PL/VTQ/ Capt Mary Boom 2 cys

Dr. R.V. Wick
PL/VT 1 cy
Kirtland AFB, NM 87117-5776

86

DEPARTMENT OF THE AIR FORCE
PHILLIPS LABORATORY (AFMC)

28 Jul 97

MEMORANDUM FOR DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

FROM: Phillips Laboratory/CA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776

SUBJECT: Public Releasable Abstracts

1. The following technical report abstracts have been cleared by Public Affairs for
unlimited distribution:

PL-TR-96-1020 ADB208308 PL 97-0318 (clearance number)
PL-TR-95-1093 ADB206370 PL 97-0317
PL-TR-96-1182 ADB222940 PL 97-0394 and DTL-P-97-142
PL-TR-97-1014 ADB222178 PL 97-0300

2. Any questions should be referred to Jan Mosher at DSN 246-1328.

Jan Mosher
PL/CA

cc:
PL/TL/DTIC (M Putnam)

